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We have examined the rational solitons in the Generalized Coupled Mode model for a deep nonlinear Bragg
grating. These solitons are the degenerate forms of the ordinary solitons and appear at the transition lines in the
parameter plane. A simple formulation is presented for the investigation of the bifurcations induced by detun-
ing the carrier wave frequency. The analysis yields among others the appearance of in-gap dark and antidark
rational solitons unknown in the nonlinear shallow grating. The exact expressions for the corresponding
rational solitons are also derived in the process, which are characterized by rational algebraic functions. It is
further demonstrated that certain effects in the soliton energy variations are to be expected when the frequency
is varied across the values where the rational solitons appear.
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I. INTRODUCTION

The localization of light in the nonlinear Bragg grating
has attracted the attention of a number of researchers
since the discovery by Chen and Mills in their numerical
work �1� of the so-called gap soliton solutions in the form
of bright solitons existing within the linear band gap.
This new found optical phenomenon was not only challeng-
ing theoretically, it was also observed experimentally �2�,
leading to further study on its potential novel function
for optical gate applications �3�. The work of Chen and
Mills was followed by an analytic study of the stationary
phenomena with zero energy flow by Trulinger and Mills �4�.
Based on the coupled mode theory they have derived
the coupled ordinary differential equations of the slowly
varying forward and backward electric field envelopes.
This formulation was applied to the case of shallow nonlin-
ear Bragg grating, for which the linear as well as the
nonlinear refractive index modulations in the grating were
assumed to be small compared to their respective averaged
value. This condition allows one to assume that a superposi-
tion of two simple forward and backward plane waves
is sufficient to describe the field dynamics. In the following
investigations, the moving gap soliton, which is a solution
to the time dependent coupled equations, was first obtained
in a limiting case by Christodoulides and Joseph �5�,
while the full solutions were found later by Aceves and
Wabnitz �6�. Subsequently Feng and Kneubühl �7� have
found that, in addition to the gap solitons, a bounded solution
could exist outside the linear band gap in the form of out-gap
dark and antidark soliton solutions. Conti and Trillo �8�
have explained the existence of all these in-gap and out-gap
solitons on the basis of a simple geometrical analysis. They
found in their work that the in-gap and out-gap solitons are
degenerated at the band edges into a special class of rational

solitonic profiles, namely, the Lorentzian soliton, with the
associated form expressed by an algebraic Lorentzian func-
tion. They have predicted that this special solitonic solution
would play a significant role in the localization of light
in periodic media since its appearance was also found in a
periodic system with photonic band gap of nonlinear origin
�9�. The appearance of rational solitons was also reported in
another optical system, e.g., optical fiber with gain and spec-
tral filtering governed by the generalized Ginzburg-Landau
equation �10�.

In order to deal with a more general model than the
shallow grating models described above, with the nonlinear
modulation allowed to be “deep,” i.e., of the same order
as its average, the plane wave assumption has to be
relaxed. Meanwhile, at least two different methods have
been proposed for the derivation of the corresponding
governing equations. The first method was formulated by
Sipe et al. �11�. In their formulation, the general Bloch
functions was used as the fundamental waves. The coupled
differential equations were derived from the superposition
of two dominant Bloch waves, while the other Bloch
functions were treated perturbatively. The second method
was introduced by Iizuka and de Sterke �12�, with its
modification given by Alatas et al. �13� for monochromatic
waves. This method is based on asymptotic formalism
where the electric field is expanded in terms of all plane
wave harmonics, and on the assumption that there exist
two harmonics associated with dominant forward and
backward fields with order of unity, while the other harmon-
ics are assumed to be small and contribute only small
corrections to the corresponding coupled mode equations.
Although the two methods differ in their detailed formula-
tions, they lead to the same so-called generalized coupled
mode equations, but indeed with different expressions for the
coefficients.

The coupled equations of deep nonlinear Bragg grating
have been shown to admit the conventional in-gap and out-
gap solitons similar to those found in shallow gratings.*Electronic address: alatas@ipb.ac.id
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Additional solution in the form of double hump gap
soliton, which is absent in the shallow case, was also found
along with some new out-gap solutions �11,12�. Recently, we
found that the coexistence of in-gap dark and antidark soliton
solutions are also admitted in the corresponding coupled
equations �13�. These dark and antidark solitons are associ-
ated with saddles in the phase portrait, and do not occur in
the shallow case. We have further found the existence of
rational solitons on the boundaries separating two regions of
different soliton solutions in the parameter space. These soli-
tons are called rational solitons because of their algebraic
functional expressions, and they are expected to play an im-
portant role in the dynamical process of related solitonic
transition. However, we stopped short of discussing the con-
nection and transition among those solutions. In this paper,
we describe in detail the detuning process where these sta-
tionary dark and antidark solitons evolve into dark and anti-
dark rational solitons due to frequency detuning. The in-
duced field dynamics is an important issue for the
observation of solitons in finite grating systems since their
existence also depends on this parameter.

II. THE COUPLED MODE EQUATION AND THEIR FIXED
POINTS

As mentioned above, the basic formulation for the dy-
namics of the forward and backward envelope fields in deep
nonlinear Bragg grating has been proposed previously in
Refs. �11–13�. Our ensuing analysis in this work is carried
out on the basis of the specific model proposed in �13�,
which, when applied to monochromatic waves, yields the
following coupled equations:

i
dEF

dz
+ �1EF + �2��EF�2 + 2�EB�2�EF + �3

*EB

+ �4
*�2�EF�2 + �EB�2�EB + �4EF

2EB
* + �5EF

*EB
2 = 0, �1�

− i
dEB

dz
+ �1EB + �2��EB�2 + 2�EF�2�EB + �3EF

+ �4�2�EB�2 + �EF�2�EF + �4
*EB

2EF
* + �5

*EB
*EF

2 = 0, �2�

where EF and EB are forward and backward envelopes of the
dominant plane waves. The small coefficient �1 is given by
�1= �̄r��2�+�� /2c2NkB, where �=�2�̄rc

−2kB
−2 � j�−N,0�ej�2 /

��2j+N�2−N2� denotes the gap center correction, �=�2

−N2�B
2 the detuning frequency with �B=ckB /��̄r, and kB

=� /� denoting Bragg frequency and wave number, respec-
tively, while � is the periodicity of the grating, �̄r is the
averaged dielectric constant, N is the order of the stop band,
and ej = �̃ j

�1� / �̄r with �̃ j
�1� representing the jth Fourier coeffi-

cient of the linear susceptibility function. The parameter �1 is
the only operational parameter to be controlled externally.
The coefficients �i’s with i=2,3 ,4 ,5 are small as well, and
they are determined by the properties of the grating param-
eters consisting of the material and geometrical specifica-
tions of a deep nonlinear grating. The coefficient of the linear
modulation term is given by �3=�2�̄r�eN+	� /2c2NkB, with
	=�2�̄rc

−2kB
−2 � j�−N,0e−jej+N / ��2j+N�2−N2� denoting the

gap width correction. The coefficient of the self-phase
and cross-phase modulation terms encompassed in �2 is
given by �2=3�2�̄�3� /2c2NkB, with �̄�3� representing the
averaged third order susceptibility. The coefficients of
the two nonlinear modulation terms in the equations
are represented by �4 and �5, with �4=3�2�̃N

�3� /2c2NkB

and �5=3�2��̃2N
�3�+
� /2c2NkB, where �̃N�2N�

�3� are the

Nth �2Nth� Fourier coefficients of third order susceptibility
function and 
=�2�̄�3��̃2N

�1� /8c2N2kB
2 �̄r. Generally, the

coefficients �3, �4, and �5 are complex quantities, but in
this study they are restricted to be real. Clearly, Eqs. �1� and
�2� will reduce to those for the shallow nonlinear Bragg grat-
ing when �, 	, 
, �4, and �5 are set equal to zero �8�. The
mathematical details of this formulation can be found in
Refs. �12,13�.

We shall hereforth focus our discussion on the case of
zero energy flow, which implies that the fields EF and EB can
be written as follows:

EF�z� = f�z�exp�i��z��, EB�z� = f�z�exp�− i��z�� , �3�

where the amplitude f�z� and phase ��z� are real functions of
z. Substituting Eq. �3� into Eqs. �1� and �2� yields the follow-
ing coupled equations:

d�

dz
= �1 + 3�2f2 + �3 cos�2�� + 4�4f2 cos�2��

+ �5f2 cos�4�� , �4�

df

dz
= �3f sin�2�� + 2�4f3 sin�2�� + �5f3 sin�4�� . �5�

The corresponding Hamiltonian for these equations is given
by

H�f2,�� = �1f2 +
3

2
�2f4 + �3f2 cos�2�� + 2�4f4 cos�2��

+
1

2
�5f4 cos�4�� , �6�

where �f2 ,�� constitutes the canonical pair in the phase
plane, i.e., d� /dz=�H /�f2, df2 /dz=−�H /��. It is readily
proven that Hamiltonian �6� is a conserved quantity satisfy-
ing dH /dz=0, and hence H�f2 ,�� will be represented as a
real constant h.

Using this property and H=h for f2 one finds

f±
2��� =

− b��� ± �b���2 + 4a���h
2a���

. �7�

With this, we arrive at the following equation for �:

d�

dz
= ± �b���2 + 4a���h , �8�

where a���=3�2 /2+2�4 cos�2��+�5 cos�4�� /2 and
b���=�1+�3 cos�2��. Thus, solving this equation for given
h yields the complete solution.

To analyze the bifurcation process, it is convenient to ex-
press the Hamiltonian of Eq. �6� in a Cartesian coordinate by
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the transformation defined by f2=x2+y2, cos2���=x2 / �x2

+y2�, sin2���=y2 / �x2+y2�. As a result, the Hamiltonian can
be recast into the following form:

H�x,y� = �+x2 + �−y2 + Ax4 + By4 + 2Cx2y2 �9�

with the coefficients in Eq. �9� given in terms of those
appearing in Eqs. �1� and �2� according to the following
expressions:

�± = �1 ± �3, �10�

A = �3�2 + 4�4 + �5�/2, �11�

B = �3�2 − 4�4 + �5�/2, �12�

C = 3��2 − �5�/2. �13�

It is clear that A, B, and C are parameters fixed by the chosen
grating parameters, while �± may have a positive, negative,
or zero value depending on the operational condition
specified by �1.

In order to identify a solitonic solution of the Hamiltonian
�9�, we first determine all of the fixed points �x̄ , ȳ� from the
equations �H /�x=0 and �H /�y=0. There are three types of
fixed points for this Hamiltonian, classified, respectively, by
�1� �x̄1=0, ȳ1=0�, �2� �x̄2�0, ȳ2=0� or �x̄2=0, ȳ2�0�, and
�3� �x̄3�0, ȳ3�0�, according to

x̄2
2 = �̄2 � −

�+

2A
, ȳ2

2 = 
̄2 � −
�−

2B
, �14�

x̄3
2 = �̄3 �

C�− − B�+

2�AB − C2�
, ȳ3

2 = 
̄3 �
C�+ − A�−

2�AB − C2�
. �15�

Clearly the fixed points exist in terms of newly introduced

coordinates �� ,
� only if �̄n�0, 
̄n�0. Since �± are linear in
�1, these conditions can, for fixed grating parameters, be met
by varying the frequency through �1. These fixed points are
distinguished by their corresponding h values of the Hamil-
tonian given below,

h1 = 0, �16�

h2x =
1

2
�+�̄2, h2y =

1

2
�−
̄2, �17�

h3 =
1

2
��+�̄3 + �−
̄3� . �18�

It should be noted that for the shallow model where
�4=�5=0, one finds the simple equality A=B=C, and
hence no third type fixed points could exist as implied by
Eq. �15�.

III. CLASSIFICATION OF BIFURCATION EVENTS

Soliton solutions of Eqs. �1� and �2� are represented in
the phase portraits of the Hamiltonian by the connections
of a given saddle with itself or with another saddle.

The saddles are fixed points having certain stability charac-
teristic determined in terms of its stability function. This
function is found by evaluating the determinant of the
Hessian of Hamiltonian �9�, which leads to the following
formulas:

S =
1

4
	 �2H

�x2

�2H

�y2 − 
 �2H

�x�y
�2� . �19�

Specifically, S�0 corresponds to a saddle and S�0 to a
center, while S=0 is associated with the bifurcation
point. For the ensuing analysis of the bifurcation behaviors,
the expressions of stability function for each type of fixed
point must be determined. This is achieved by substituting
Eqs. �14� and �15� into Eq. �19�, with the result given as
follows:

S1 = 4�+�− = 4AB�̄2
̄2, �20�

S2x =
8�+�C�+ − A�−�

A
= − 4�AB − C2��̄2
̄3, �21�

S2y =
8�−�C�− − B�+�

B
= − 4�AB − C2�
̄2�̄3, �22�

S3 =
16�C�− − B�+��C�+ − A�−�

AB − C2 = 16�AB − C2��̄3
̄3.

�23�

Clearly, in all cases, the bifurcation processes can be induced
by tuning the frequency � imbedded in �1. From Eq. �23�
one sees that the fixed points of the third type ��̄3�0, 
̄3

�0� are saddles if and only if AB−C2�0, which is the case
of our focus. It is also clear that the origin is a saddle if and
only if �+�−�0, or equivalently ��1�� ��3�, which corre-
sponds to the in-gap solution.

There are two distinct classes of bifurcation events,
one involves only fixed points of the first and second
type, while the second class involves the second and
third type fixed points. The first class bifurcation occurs
when

S1 = S2x = 0 or S1 = S2y = 0. �24�

Here, the change of stability of the origin coincides with the
appearance of a new fixed point on the x or y axis. This
bifurcation process can be best illustrated by the phase por-
traits for specific grating parameters, as will be presented
below.

One possible bifurcation for the second case of Eq.
�24� is demonstrated in Fig. 1. For this case, we have chosen
A�0, B�0, a large positive �+ and small positive C so that

�̄2�0, �̄3�0, and 
̄3�0 �absence of third type fixed point�
while varying �− from negative to positive. Then S1 and 
̄2
also change sign from negative to positive signifying the
appearance of a saddle on the y axis as S2y changes from

positive to negative. With �̄2�0 and S2x�0 the second type
fixed point on the x axis remains as a center throughout the
process. Thus as a result of varying � or �−, the origin turns
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from a saddle into a center, and at the same time two saddles
appear on the y axis. One observes further in Fig. 1, the left
graph is the well-known eight shape orbit, which represents a
bright gap soliton �4�. This homoclinic connection evolves
into a heteroclinic connection �right graph�, which represents
an out-gap dark or antidark soliton. In between, the process
features the occurance of an orbit having infinite slopes at
the origin �mid graph� which represents the rational soliton
�8�.

The second class bifurcation events occur when

S2x = S3 = 0 or S2y = S3 = 0. �25�

Consider for instance the second case with positive 
̄2 rep-
resenting the presence of a second type fixed point. A bifur-

cation occurs when the sign of �̄3 changes from negative to
positive. The corresponding sign changes of S2y and S3 indi-
cate that the second type fixed points turns from a saddle into
a center, in concurrence with the appearance of a fixed points
of the third type as a saddle.

Since the first class bifurcation events at the origin have
been studied previously for the case of shallow grating
model �8,14�, we shall henceforth concentrate our discus-
sions on the second class process which involves the third
type fixed point. As mentioned earlier, this fixed point is
excluded in the case of shallow grating. For the following
analysis, the Hamiltonian of Eq. �9� is rewritten in the �-

plane as H�� ,
�=�+�+�−
+A�2+B
2+2C�
, where �=x2

and 
=y2, and �� ,
��0. The heteroclinic connections are
solutions of H�� ,
�−h3=0, which can be put into the factor-
ized form as follows:

�P1� + Q1
 − h3��P2� + Q2
 − h3� = 0, �26�

with

2P1 = �+ + 2
̄3
�− �AB − C2�, P2P1 = − h3A , �27�

2Q1 = �− − 2�̄3
�− �AB − C2�, Q2Q1 = − h3B . �28�

The condition AB−C2�0 guarantees that both P’s and Q’s
are real, so that the equality in Eq. �26� represents two inter-
secting straight lines in the �-
 plane. The intersection points
of these lines represent the saddles provided they are lying in
the first quadrant of the plane. The classification of their
heteroclinic connections can be made on the basis of those
intersecting points as described below.

There are six possible distinct heteroclinic connections
shown in Fig. 2 along with the corresponding solutions of
Eq. �26�. Among those six possibilities, Figs. 2�b� and 2�c�

are obviously equivalent just as Figs. 2�d� and 2�e�, since
they are related by simply interchanging � with 
. It should
be pointed out that except for Fig. 2�a�, all those phase por-
traits apply for both in-gap ��+�−�0� or out-gap ��+�−�0�
cases. In contrast, Fig. 2�a� applies for the out-gap cases
only, since the fixed point at the origin is a center having
�1�0.

Presented in Figs. 3 is an example of the bifurcation event
on the 
 axis corresponding to Fig. 2�b�. In this process we

fixed �̄2�0, 
̄2�0, and 
̄3�0 while varying �̄3 from nega-
tive to positive value. Consequently, S2y from Eq. �22�
changes from negative to positive value, and S3 from Eq.
�23� changes from positive to negative value. This means
that the saddle on the y axis turns into a center in conjunction
with the appearance of a third type fixed point as a saddle.
Meanwhile, the origin remains as a center outside the gap
��+�−�0� and there are no other fixed points than the ones
mentioned.

IV. RATIONAL SOLITONS

Let us return to the case of first class bifurcation consid-
ered earlier. For the following analysis, Eq. �8� is rewritten in
the form

d�

dz
= ± ��0 + �1 cos2��� + �2 cos4��� , �29�

where

�0 = �−
2 + 4hB, �1 = �−��+ − �−� + 4h�C − B�,

�2 = ��+ − �−�2 + 8h�A + B − 2C� .

In compliance with the second condition of Eq. �24�, we
must have 
̄2=0, or �−=0, hence h1=h2y =0. Thus Eq. �29�
reduces to the following simple form:

d�

dz
= ± �+ cos2 � . �30�

For both the first and second type fixed point, the solutions
are

�n =
�

2
+ n� , �31�

�±,n�z� = ± arctan��+z� + n� , �32�

where n=0,1. It should be noted that the constant solutions
of Eq. �31� which appear as limiting cases of Eq. �32� for

FIG. 1. A possible first class
bifurcation process induced by in-
creasing �1, showing the level sets
h=h1 �left graph�, h=h1=h2y

�middle graph�, and h=h2y �right
graph�.
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z→� is actually associated with two isolated fixed points
having f2=0. The remaining two solutions �−,n�z� consist of
the right lobe �n=0� and the left lobe �n=1� with the ampli-
tude function given by

f−
2�z� = − �+	 1 + ��+z�2

A + 2C��+z�2 + B��+z�4� . �33�

This is a rational algebraic function, which together
with the two corresponding �−,n�z� solutions represent the so

called “bright-rational soliton.” The associated trajectories
are described in Fig. 1�b� which are characterized by
the presence of a degenerate fixed point at the origin. This
solitonic state appears as a result of frequency-tuning
induced transition from the eight-shape trajectory in Fig.
1�a�. Further increase of � leads eventually to the hetero-
clinic trajectories in Fig. 1�c�, featuring the appearance
of two second type fixed points on the y axis, with the
second type fixed points remaining as centers on the x

FIG. 2. The six possible het-
eroclinic connections for h=h3 in
the �-
 and its associated x-y
planes. These lines represent in-
variant manifolds of the third type
fixed points.

FIG. 3. A possible second
class bifurcation process induced
by increasing �, showing phase
portraits for h=h2y �left graph�,
h=h2y =h3 �middle graph�, and
h=h3 �right graph� in �a� �-

plane �b� x-y plane, corresponding
to the case characterized by
A�0, B�0, and �+�−�0, and
hence C�0.
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axis. Note that this interpretation hinges on the condition that
f−

2�z��0 for all z. This is satisfied according to Eq. �33�
in view of the choices made earlier, namely, A�0, B�0,
C�0, and �+�0.

Next, we consider the second class bifurcation events
taking place on the y axis only. To be specific, we consider
parameter values leading to intersecting points presented
in Figs. 2�a�, 2�b�, and 2�d� for h=h3. As shown in Fig. 3,
the second type fixed point moves from left to right, passing
across the 
 axis. The bifurcation happens when the second

part of Eq. �25� and �̄3=0 are satisfied, which implies
C�−=B�+ according to Eq. �22�. At this bifurcation point,
we have h3=h2y =�−
̄2 /2 from Eqs. �17� and �18� as
well as 
̄2= 
̄3=−�− /2B from Eqs. �14� and �15�. Conse-
quently the differential Eq. �29� simplifies to the following
form:

d�y

dz
= ± �Dy cos2 �y , �34�

where

Dy � �+
2 − �−

2A/B = − 4
̄2
2�AB − C2� �35�

has a positive value since AB−C2�0. The solutions of Eq.
�34� are

�y,n =
�

2
+ n� , �36�

�y,±,n�z� = ± arctan�z�Dy� + n� , �37�

where n=0,1. The two constant solutions for �y,n yield the
fixed point, 
̄2= f+

2 = f−
2, while the solutions �y,±,n�z� yields

the corresponding amplitude functions:

fy,±
2 �z� = −

�−
2

2B
	 1 + �z�Dy�2

�+ ± �Dy + �−�z�Dy�2� . �38�

The subscript y indicates that the related bifurcation event
occurs on the y axis. Similar amplitude functions are found
when the coordinates x and y, the parameters �+ and �−, as
well as A and B are interchanged. Note also that
lim�z�→� fy,±

2 �z�=−�− /2B= 
̄2, implying the constant �y,n so-

lutions as the limiting cases for the other solutions as found
earlier in the previous case.

To interpret this expression, observe that the numerator
of Eq. �38� is positive for all z, while the denominator
can have a zero at, say, z= ±zs, depending on the values
of the parameters. In other words, fy,±

2 �z� have singularities
and change sign at ±zs. To characterize the behavior of the
amplitude functions �38� we define the peak or dip to the
pedestal ratio as R±= fy,±

2 �z=0� / fy,±
2 �z= ±��. One finds for

this case,

R± =
�−

�+ ± �Dy

=
B

C � �− �AB − C2�
. �39�

The second equality in Eq. �39� is obtained by using the
relations �+=−2C
̄2 and �−=−2B
̄2. With this, the ampli-
tude functions �38� can be rewritten as

fy,±
2 �z� = 
̄2R±	 1 + �z�Dy�2

1 + R±�z�Dy�2� . �40�

In the phase portrait of Fig. 4�a�, the two different saddles
on the y axis are connected by four lines, each representing a
rational dark or antidark soliton. For this case, both R+ and
R− are found to be positive so that the corresponding fy,+�−�

2

are positive for −��z��, featuring the typical profiles of
the solitons. The ratio, R±, for the rational dark soliton lies in
the range of 0�R±�1, while R±�1 for the rational antidark
soliton. For R+�−��R−�+�, the amplitude functions fy,+�−�

2 are
related to the outer saddle connection, while fy,−�+�

2 corre-
sponds to the inner connection. In the phase portraits of Fig.
4�b�, the two different saddles are connected by just two
lines and there are four unbounded lines. In this case R+ and
R− have opposite signs. The bounded solutions are found
when R+�−��0, while R−�+��0 leads to the unbounded ones
associated with a zero at zs=1/�−R−�+�Dy in the denomina-
tor. Thus, fy,+�−�

2 �0 for �z��zs, and the relevant solutions are
given by Eqs. �37� and �38� with z restricted to this range.
For the range �z��zs, fy,+�−�

2 is negative, and fy,+�−� does not
correspond to solution of Eqs. �1� and �2�. In Fig. 4�c�, all
branches are unbounded, since both R+ and R− are negative
in this case.

FIG. 4. The phase portraits at
the bifurcation point in x-y plane
�left� and �-
 plane �right�.
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It is important to add that the phase portrait of
Fig. 4�a� occurs outside the band gap only. This is the con-
sequence of R+R−=B /A�0 and R++R−=2C /A�0, which
implies that A, B, and C have the same sign, and hence the

condition �̄3=0 simply leads to �+�−�0. Similarly, with
R+R−=B /A�0 and R++R−=2C /A�0 one readily shows
that A and B must have the same sign while C has the
opposite sign, implying �+�−�0, which means that
Fig. 4�c� occurs inside the band gap. For the case of Fig.
4�b�, one finds R+R−=B /A�0, but R++R−=2C /A can either
be positive or negative. Consequently, C can have the same
or different sign with respect to the sign of A and B, corre-
sponding to �+�−�0 or �+�−�0, respectively. In other
words the phase portrait of Fig. 4�b� can exist either inside or
outside the band gap.

We illustrate in Fig. 5�a� the out-gap cases for a set
of parameter values, showing the presence of two
different saddle connections on the right half-plane. The
two cases are shown to represent the dark and antidark
solitons. The corresponding amplitude functions are given
by fy,+

2 and fy,−
2 , respectively for n=0 in Eq. �36�. In

Fig. 5�b� we illustrate the in-gap case for a set of parameters
showing the presence of a two different saddle connections
on right half-plane corresponding to the antidark soliton
and the unbounded branch. The related amplitude
functions are given by fy,−

2 and fy,+
2 , respectively for n=0.

The other orbits shown in the left half-plane of

Figs. 5�a� and 5�b� have the same amplitude functions but
correspond to n=1.

Finally, we investigate the occurrence of rational
solitons as transitional states between ordinary solitons
induced by frequency detuning, which also entails corre-
sponding variation of f2 as implied by Eq. �7�. Consider
the second class bifurcation process involving solitons
outside the gap. In this case S2y changes from negative to
positive value and S3 from positive to negative value, as
illustrated in Fig. 6�a�. Prior to that process, one has a pair of
ordinary out-gap dark and antidark solitons represented
by trajectories connecting two saddles on the positive
and negative y axis and lying in the half plane on either
side of the y axis. As a result of increasing the frequency,
these states transform via the rational soliton into two
different pairs, each consisting of a dark and an antidark
soliton. The first pair is associated with the two trajectories
that connect the saddles in the first and fourth quadrants.
Their amplitude functions feature higher background
and narrower profile, compared to the amplitude functions
before the bifurcation. The second pair is associated with
the two trajectories connecting the saddles in the first and
second quadrants. In this case, their amplitude functions
grow from a flat profile related to the constant solutions
prior to the bifurcation. Similar transitions related to the first
class bifurcation event were discussed by Conti and Trillo �8�
for moving solitons on the basis of properties of a

FIG. 5. �a� The out-gap dark
�left� and antidark rational soliton
solution �right� for ��+ ,�−�
= �2,1� and �A ,B ,C�= �−1,−2,
−4� with R−=0.26 and R+=7.74,
respectively, while D=−7. �b�
The in-gap antidark rational
soliton �left� and unbounded solu-
tion �right� for ��+ ,�−�= �2,−1�
and �A ,B ,C�= �−2,1 ,−2� with
R−=2.22 and R+=−0.22, respec-
tively, while D=6, together
with their corresponding phase
portraits in the x-y plane at
h=h2y =h3, where the thick lines
correspond to the trajectory of the
solutions and the arrow heads in-
dicate the direction of �x ,y� point
movement on the associated orbit
as a function of increasing z.
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Hamiltonian like the one in Eq. �6�, but with a much simpler
structure.

An additional characteristic of the soliton is described
by its energy profile. This profile is defined by the
integral �Q���=
−�

� �f2�z ,��dz, where the integrant is
�f2�z ,��= �f2�z ,��− f2�� ,��� and normalized to �Qrat. It is
interpreted as the total energy loss �excess� of the dark �an-
tidark� solitons with respect to the c.w. background. Numeri-
cal integrations for ���rat were performed on the basis of
the exact solutions of S3 soliton found in our previous work
�13�. In the present case, the values of �Q /�Qrat for
���rat are calculated in the same way on the basis of exact
solution of the S2y soliton. The results are depicted in Figs.
6�b� and 6�c� as functions of normalized frequency � /�rat
for different solitons encountered in the process as described
above. Specifically, it is clear from each upper curve of those
figures that the normalized energy exhibits a continuous
variation with � in the vicinity of �rat, interrupted only at
�rat by a discontinuity in its derivative. These abrupt changes
further characterize the transition process induced by fre-
quency detuning. One may also add in this connection that
the soliton tails decay nonexponentially at the transition
point.

It should be pointed out here that the stability analysis
of these stationary rational solitons is a crucial and challeng-
ing issue that should be carefully investigated, especially
for solitons with a nonvanishing background, which

perhaps requires rigorous methods beyond what was given
in Ref. �15�. Indeed, the oscillatory instabilities found in
the in-gap bright solitons �16,17� might occur in more
complicated patterns. Such stability studies are usually
performed for infinite gratings. In a finite grating, which
is the realistic system encountered in an experiment, the
stability problem has to be formulated precisely according
to the experimental setting. This creates additional difficulty
in the stability analysis. It is also tempting to examine
whether the Hamiltonian versus energy ��Q� curves,
�cf. Ref. �18��, together with the properties of �Q described
above, could yield useful results for such study. In any case,
the expression found in this work may still be useful for
future work.

V. CONCLUSION

We describe in this report the bifurcation process of
solitonic solutions in a deep nonlinear Bragg grating by a
geometrically simple way on the basis of the underlying
Hamiltonian structure of the system. We demonstrate that
the rational solitons occur at the bifurcation point as the lim-
iting cases of ordinary solitons. Their occurrence is brought
about by varying the detuning frequency, and they may ap-
pear both for frequencies inside and outside the band gap.

FIG. 6. �a� Evolution of the phase portraits in x-y plane for increasing �, from �=0.8�rat to �=1.6�rat, where �rat denotes the frequency
at which the rational soliton occurs. The graphs in the lower section describe the frequency dependent variations of the normalized �b� loss
and �c� excess intensity of the out-gap dark and antidark solitons, respectively. The changes of slope at the bifurcation point indicated on the
upper branch of the curves are zoomed in the insets of each figures.
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The explicit expressions for these rational solitons are found
in the form of rational algebraic functions of z. It is further
demonstrated in two specific cases that in addition to in-gap
bright rational soliton found previously in the case of shal-
low grating, both in and out-gap dark and antidark rational
solitons, which were excluded in a shallow nonlinear Bragg
grating, are admitted in the system considered, provided that
the coefficients of the three nonlinear terms in the general-
ized coupled mode model satisfy a quadratic inequality. A
numerical analysis of the behavior of soliton energy as a
function of the frequency displays distinct features at the
transition points.
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